

NEW DELHI METALLO-β-LACTAMASE-1 INHIBITORS: A REVIEW OF THE PATENT LITERATURE (2013-2019)

Ajmer Singh Grewal¹, Sukhbir Singh^{1*}, Neelam Sharma¹ and Komal Thapa²

^{1*}Chitkara College of Pharmacy, Chitkara University, Punjab, India. ²Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India.

Abstract

The worldwide prevalence of New Delhi metallo- β -lactamase-1 (NDM-1) has created distress among clinicians. These NDM-1 producing pathogens are resistant to all β -lactam antibiotics including carbapenems and are greatest threat to public health as they can easily extend via horizontal gene transfer. In the past 10 years, various NDM-1 inhibitors have been reported showing diverse chemical structure, but haven't been approved for clinical use; this may be due to structural complexity of the enzyme that limits the development of clinically useful NDM-1 inhibitors. This review article covers the patent literature in the area of NDM-1 inhibitors from 2013 to 2019, along with background about role of NDM-1 in antibiotic resistance.

Key words: Antibiotic Resistance, New Delhi metallo-β-lactamase-1, NDM-1 inhibitors, Patent, Super bug.

Introduction

The swiftly growing case of antibiotic resistance in patients has grown serious in community and health care settings all over the world (Cosgrove, 2006). According to the reports, increased mortality arises due to infections caused by multidrug-resistant organisms than the susceptible bacteria, which has put a huge economic burden in US of over \$20 billion per year. A global estimation of 300 million premature deaths by 2050 due to antibiotic resistance has been predicted that will force millions of people into severe poverty (Sydnor and Perl, 2011; O'Neill, 2016). There are several reasons of developing antibiotic resistance like mutation in bacterial enzyme due to environmental changes and the overuse of antibiotics (Adekunle, 2012; Adegoke et al., 2017). Overuse or abuse of antibiotics in a particular population leads to selective killing of susceptible bacteria but gives no effect on resistant bacteria (Llor and Bjerrum, 2014; Fair and Tor, 2014). The antibiotics which were clinically used to target prokaryotic cells (bacterial cell wall, ribosome and DNA gyrase) are now least effective (Fair and Tor, 2014). Increasing rate of bacterial resistance has threatened the effectiveness of the most reliable and potent antibiotics (Davies and Davies, 2016; Bush and Fisher, 2011; Ventola, 2015). Health experts had been warning over a decade about speedily approaching 'postantibiotic era' which means effective antibiotic will no longer remain effective against infections causing pathogens (Zhang *et al.*, 2017; Kashyap *et al.*, 2017; Podolsky, 2018).

The hydrolysis of amide bond in β -lactam ring by beta-lactamases is the recurrent cause of resistance. Beta-lactamases are categorized in classes A, B, C and D according to Ambler's classification (Khan et al., 2017). Class B enzymes, also known as metallo- β lactamases (MBLs) holds broad spectrum of catalyzing the hydrolysis of almost all β-lactam antibiotics (Zhang et al., 2011; Rogers et al., 2013). NDM-1 (EC 3.5.2.6) is a type of B1 MBL formed in pathogens especially Gram-negative bacteria carrying bla_{NDM-1} gene (King et al., 2012). These pathogens are also called "super bugs" or "bad bugs" because they are resistant to all antibiotics including carbapenem and are responsible for severe infections in humans (Srivastava et al., 2011). NDM-1 was first detected in Swedish patient, who was infected with Klebsiella pneumonia and Escherichia coli in New Delhi; December 2009 (Struelens et al., 2010). A great challenge persists among health workers across the world for the treatment of infections caused by NDM-1 bearing pathogens such as E. coli and K. pneumonia. From the

*Author for correspondence : E-mail: sukhbir.singh@chitkara.edu.in, singh.sukhbir12@gmail.com

past decade, the hydrolytic activity of the MBLs, especially NDM-1 has been largely studied (Groundwater *et al.*, 2016).

NDM-1 INHIBITORS

The discovery of NDM-1 has prompted many researchers to identify and evaluate promising agents for NDM-1 inhibition which may protect antibiotics from hydrolysis. Currently maximum efforts are concentrated on the development of molecules which act synergistically with carbapenems to restore the effectiveness of antibiotic against NDM-1 as it presents the possibility to protect and prevent hydrolysis of β -lactam antibiotics (Livermore et al., 2013). In 2011, colistin (or polymyxin E, a mixture of cyclic polypeptides colistin A and B) was reported to have inhibitory effects against NDM-1 producing E. coli (minimum inhibitory concentration (MIC) was < 0.5 mg/ L after 4 months in *E. coli* strain isolated from patient) and suggested that invasive infection with NDM-1 producers can be successfully treated with colistin, although with the risk of substantial toxicity (Stone et al., 2013). Thiophene-carboxylic acid derivatives were identified to have inhibitory action on NDM-1 as it gave synergistic effect in combination with meropenem against E. coli expressing NDM-1 (Shen et al., 2013). Recently ethanol extracts from the leaves of 240 medicinal plants were screened for antibacterial activity against NDM-1 expressing E. coli strain. Six plant extracts showed the MIC between 2.56 and 5.12 mg/ml and half maximal inhibitory concentration (IC₅₀) value ranged between 0.50and 1.2 ng/µl for NDM-1 inhibition. All the plant extracts showed synergistic effects when combined with colistin, meropenem and tetracycline (Chandar et al., 2017). Cystatin 9 and cystatin C, significantly improved antimicrobial resistance against NDM-1 in mice infected intranasally with a 90% lethal dose challenge of NDM-1 producing K. pneumoniae (Holloway et al., 2018). Dipicolyl-vancomycin conjugate showed favorable inhibitory activity against NDM-1 producing bacteria and successfully restored meropenem activity against NDM-1 producing K. pneumoniae in a murine sepsis infection model (Yarlagadda et al., 2018). Thanatin inhibited the enzymatic activity of NDM-1 by displacing Zn ions from the active site and reversed carbapenem resistance in NDM-1 producing bacteria in vitro and in vivo (Ma et al., 2019). In the past 10 years various types of NDM-1 inhibitors were reported and a wide diversity was observed in the chemical nature of the NDM-1 inhibitors including natural plant based compounds (flavonoids, lignans, steroidal & saponins, terpenoids, alkaloids, benzophenones and stilbenoids), synthetic small molecule inhibitors (sulphonamides, pyrrolidines, thiophenes, alkanoic acids, indolines, thiols, thioacetamides, bisthiazolidines, organoselenium compounds, salicylic acid analogues, thienyls, cyclic boronates, dipicolinic acid derivatives, triazoles, tetrazoles, benzoquinones, semicarbazones, bismuth compounds, benzamides, dicarboxylic acids, ebsulfurs, sulfonylureas and carbamates), β -lactams (N-sulfonyloxy β -lactams, cephalosporins and carbapenems), amino acid derivatives (homocysteine analogues, amino acid thioesters and poly-amino acids) and peptides (Groundwater *et al.*, 2016; Linciano *et al.*, 2019).

Patent Literature

With the increasing frequency of multi-drug resistance due to NDM-1 producing strains, various NDM-1 inhibitors were developed. Numerous reports disclosing NDM-1 inhibitors had been appeared in the patent literature and were published in various reviews (Fast and Sutton, 2013; Buyank, 2013; Chaudhary and Payasi, 2013; Keating et al., 2014; Groundwater et al., 2016). Substituted maleic acid derivatives were patented as MBL inhibitors in 2007. Maleic acid derivatives showed better MBL inhibitory potency but regardless of their improved inhibitory potency, larger maleic acid analogs did not lower MICs of partner antibiotics against an MBL-producing P. aeruginosa strain (Chikauchi et al., 2007). Recently, a patent described the preparation of maleic acid derivatives with improved ability to inhibit NDM-1 and to synergize with imipenem (Morinaka et al., 2014). Another patent published traditional Chinese medicinal products for the treatment of infections due to bacteria producing NDM-1 (Jinjun, 2015). Tianjin International Biomedical Research Institute, China Pharmaceutical University, Jiangsu Normal University, Texas A&M University System, Tianjin International Biomedical Research Institute, Xiamen Jushengyuan Pharmaceutical Technology, Antabio Sas, Tianjin International Joint Academy of Biotechnology & Medicine, Nanjing Guangfang Biotechnology, Beijing University, Sun Yat-Sen University, Marquette University, Loyola University Chicago, University of Texas System, Jilin University, Chinese Academy of Medical Sciences, Northwest University, Zhengzhou University, Wuhan University People's Hospital, Loyola University Chicago, University of Texas System and Xuhe Pharmaceutical Technology, are the major academic and research institutions and companies, which published patents disclosing NDM-1 inhibitors recently. General chemical structures of NDM-1 inhibitors along with title of the patent application published in the recent patent literature by various research institutions and pharmaceutical companies are presented in table 1.

Patent No. and Date	Title of Patent	Company/ Assignee	General Structure	References
CN103156833A	"Application of (R)-2-Methyl-3-	Tianjin	Structure	Zihe
		•	0	
June 19, 2013	Mercaptopropionic Acid in Inhibiting	International	но сн	<i>et al.</i> ,
	NDM-1"	Biomedical	10 51	2013
		Res. Institute		
CN102626408B	"Application of Isatin Thiosemicarbazone	Tianjin	H R ¹	Yu
October	Compound in Inhibition of NDM-1	International	N ^N NH	et al.,
16,2013	Activity"	Biomedical		2013
	·	Res. Institute	$R^2 R^3$	
CN103588861A	"New Delhi Metallo-Beta-Lactamase	China	НО	Yu
February	Inhibitory Peptide and Application	Pharmaceutical	HN O	et al.,
•				
19,2014	Thereof"	University	NH2 NH2	2014
CN103951680A	"Application of Novel Metal	China	R ³ -1	Yang
July 30, 2014	Beta-Lactamase	Pharmaceutical		et al.,
	Inhibitor in Preparation of	University	S€0	2014
	Medicines for Resisting		N	
	Drug-Resistance Bacteria"		,>=N	
			R ²	
WO2017084231A	"Series of Fluorine-Containing Carbazole	Jiangsu		Changshen
May 26, 2015	Compounds, Preparation Method	Normal	R ⁶ R'	et al
Widy 20, 2015	and Use Thereof'	University	R ⁵	2015
	and Use Thereof	University	N-R ⁰	2013
			R ⁴	
			R ³ R ²	
WO2015157618A	"Novel Inhibitors of the New Delhi	Texas A&M	1 ^S H a	Sacchettin
October 15, 2015	Metallo Beta Lactamase (NDM-1)"	University		et al.,
		System	H H O	2015
CN103130692B	"Application of 3-Mercapto Propionic	Tianjin		Zihe
March 14, 2016	Amides"	International	0	et al.,
Waren 14, 2010	7 Mindes	Biomedical	HS NO R2	2016
				2010
		Research		
		Institute		
CN105646251A	"Aspergillomarasmin Compound and	Xiamen	но он	Yuanjie
June 8, 2016	Synthesis Method Thereof"	Jushengyuan	0	et al.,
		Pharmaceutical	HO >	2016
		Technology	>	
			O NHO	
			H ₂ N OH	
GB2533136A	"Compounds"	Antabio Sas	$^{11}Y^{1}A^{1}Y^{2}A^{2}$	David
June 15, 2016			N-SO2	et al.,
			S-(2016
			RINCO	
			ОН	
CN103159660B	"(2R)-1-(2-Methyl-3-(methoxy (methyl)	China	0	Zihe
July06, 2016	amino)-propanoyl)	Pharmaceutical	ОН	et al.,
	pyrrolidine-2-carboxylic	University	N N I	2016a
	Acid and its Applications"		N.O	

Table 1: Patents NDM-1 inhibitors reported in recent patent literature (from 2013 to 2019).

Table	1	Continue

Table I Continue				
CN103159733B	"Having NDM-1 Inhibitory Activity	Tianjin	0	Wei
July 13, 2016	Thiophene Carboxamides"	International	\mathbb{R}^1 S. \mathbb{I} \mathbb{R}^2	et al.,
		Biomedical	N N N	2016
		Res. Institute	P	
CN103156832B	"Application of 3-Mercaptopropionic Acid	Tianjin		Zihe
August	Compounds in Inhibiting NDM-1"	International	O 	et al.,
03,2016		Biomedical	HO	2016b
		Research	R	
		Institute		
CN103127048B	"Purpose of L-Cysteine Compound for	Tianjin		Zihe
August	Restraining New Delhi Metallo	Int. Joint	R ^{2_0} _0	et al.,
03,2016	(NDM)-1 Activity"	Academy of	R ¹ SH	2016c
		Biotechnology	N. Volt	
		& Medicine		
CN103130686B	"N,N'-Diaryl Substituted Asymmetric Urea	Tianjin	R ²	Cheng
September	Compounds and their Preparation and Use"	International	(m)	et al.,
14,2016		Biomedical	NH	2016
,		Res. Institute	0≡ N·H	
		ites: institute		
			R ¹	
CN103156856B	"Application of 3-Mercaptopropionic Acid	Tianjin		Zihe
September	Amides of Compound"	International	O II	et al.,
14,2016	Annues of Compound	Biomedical	R ¹ SH	2016d
14,2010		Res. Institute	R^2	20100
CN103156844B	"Application of Schiff Base Compound in		12	Zihe
	**	Tianjin	R ²	
November	Inhibition of Activity of NDM-1"	International	A N (B)	<i>et al.</i> ,
16,2016		Biomedical		2016e
CN 110 (40 (202 A		Res. Institute		
CN106496303A	"Inhibition Peptide of Metal Beta-Lactamase	Nanjing	SHINE	Yi
March	and Application Thereof'	Guangfang	C C OH	<i>et al.</i> ,
15,2017		Biotechnology	0 NH	2017
			H ₂ N	
			\sim	
CN106518702A	"Aspergillomarasimine A and Derivative,	Beijing	O R ⁴ R ³	Xiaoguang
March 22, 2017	Synthetic Method and	University	il i	et al.,
	Application Thereof"		I O Nu	2017
			H B^2	
			N	
			R ¹	
CN103127047B	"L-Cysteine Use the Active Compounds	Tianjin		Zihe
May 10, 2017	in Suppressing NDM-1"	International	HOFO	et al.,
		Biomedical	RSH	2017
		Research		
		Institute	11	
CN103156834B	S)-2-Methyl-3-mercaptopropionic acid in	Tianjin		Zihe
May 17, 2017	use in the inhibition of NDM-1	International	HO	et al.
		Biomedical		2017a
		Research		20174
		Institute	ŚH	
1		monute		

3324

Table I Continue				
CN106905273A1	"4-Oxa-4,5,6,7-Tetrahydro Benzo[B]	Sun	R ¹	Yiqian
June 30, 2017	Furan-3-Carboxylic Compound	Yat-Sen	5	et al.,
	and Application Thereof"	University		2017
	11	5	< >=0	
			OH	
US20170226090A	"Indoline Sulfonamide Inhibitors of	Marquette	X	Becker
		-	×	
August 10, 2017	DAPE and NDM-1 and Use of Same"	University	O. N.	<i>et al.</i> ,
			R1S OFR	2017
			R ³ U	
CN107320466A	"Medical Applications of Magnolol in	Jilin	HO	Xuming
November	Preparing NDM-1 Enzyme Inhibitor"	University		et al.,
7,2017				2017
			OH T	
CN108084075A	"Proline Derivatives Having	Tianjin	0 ⁰ R ¹	Qingzhi
May 29, 2018	Beta-Lactamase	University	R ²	et al.,
	Inhibitory Effect"			2018
CN108159029A	"Application of Pterostilbene in	Deng	<u>OH</u>	Xuming
June 15, 2018	Preparation of NDM-1	Xuming		et al.,
	Enzyme Inhibitor"	0		2018
				2010
CN108272798A	"Application of Thiazolidine-2,	Northwest	0.0	Junnan
			s	
July 13, 2018	4-Dicarboxylic Acid in Preparing	University	50	<i>et al.</i> ,
	Drug for Inhibiting Activity		HNS	2018
	of Drug-Resistant Bacteria"		R	
			ON	
			HO' N	
CN108272800A	"Application of Pyridine-2,	Northwestern	s	Yuan
July 13, 2018	6-Dioctyl Phthalate to Preparation	University)=/	et al.,
	of Medicine for Inhibiting		FO	2018
	Drug-Resistant Bacteria Activity"		HN S R	
	-		0 N	
			но	
CN106220588B	"Metal ² -Lactamase Inhibitor	Zhengzhou	SR	En
August 7, 2018	Cyclic Amino Acid Derivatives	University	S N S	et al.,
11494507,2010	and Dithiocarbamates Prepared"		N SR	2018
	and Difficent buildes Treputed		RS_N_N	2010
			S RS S	
CN109354606A	"A Kind of Difunctional	Wuhan	Ile-Phe-Gly-	Bingzheng
February 19, 2018	NDM-1 Carbapenem Enzyme	University	Arg-Ile-Arg-	
1 Coluary 19, 2018	· ·	•		<i>et al.</i> , 2010
	Inhibition Peptide and its Application"	People's	Gly-Phe-Ile-	2019
		Hospital	Lys-Asn-Ile-	
			Trp-Ser-Asp	
US201900849321	"Indoline and Tetrahydroquinoline	Loyola	X	Becker
March 21, 2019	Sulfonyl Inhibitors of	University	L' Try	et al.,
	Dimetalloenzymes and Use	Chicago,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2019
	of the Same"	University of	OFUZ A-R	
		Texas System	R	
L		-		

CN104415017B	"Application of Mercapto-Propanol	Xuhe	III NAAMINI II	Yu
May 7, 2019	Compounds in Inhibition of NDM-1"	(Tianjin)	R	et al.,
		Pharmaceutical	HSCOH	2019
		Technology		
CN104415019B	"3-Sulfydryl-N-Benzyl Propionamides	Xuhe		Honggang
May 7, 2019	Compound is Inhibiting the	(Tianjin)	0	et al.,
	Purposes in NDM-1"	Pharmaceutical	HS	2019
		Technology	RH	

Conclusion

The fast-evolving resistance to carbapenems, since the origin of pathogens with NDM-1 gene has created seriousness among health care centers around the world. Infectious Disease Society of America has commenced a "bad bugs need drugs" campaign to encourage development of new antibiotics by 2020 that could fight with multi drug resistant infectious. Effective and novel drug design for NDM-1 producing pathogens is a great challenge for the medicinal chemists. Undoubtedly, only a robustly combined effort, merging drug design approaches with a deeper knowledge of NDM-1 structure and mechanism could orient a successful drug discovery campaign.

Acknowledgement

The authors are thankful to Chitkara College of Pharmacy, Chitkara University, Punjab, India for providing facilities for compilation of this review.

Conflict of Interest

The authors declare no conflict of interest.

References

- Adegoke, A., A. Faleye, G. Singh and T. Stenström (2017). Antibiotic resistant superbugs: assessment of the interrelationship of occurrence in clinical settings and environmental niches. *Molecules.*, 22(1): e29.
- Adekunle, O.O. (2012). Mechanisms of antimicrobial resistance in bacteria, general approach. *International Journal of Pharma Medicine and Biological Sciences.*, 1(2): 166-187.
- Becker, D.P., R.C. Holz, T.K. Heath, C. Reidl, A. Starus and W. Fast (2017). Indoline sulfonamide inhibitors of DAPE and NDM-1 and use of the same. U.S. Patent., US2017 0226090A1.
- Becker, D.P., C. Reidl, M. Moore, T.K. Heath and W. Fast (2019). Indoline and tetrahydroquinoline sulfonyl inhibitors of dimetalloenzymes and use of the same. U.S. Patent., US20190084932A1.
- Bingzheng, S., Y. Yan, C. Zhizhen, P. Yan, S. Jinchun, Y. Zhaohui, K. Shaobo and Z. Lingli (2019). A kind of difunctional NDM-1 carbapenem enzyme inhibition peptide and its application. *Chinese Patent.*, CN109354606A.

- Bush, K. and J.F. Fisher (2011). Epidemiological expansion, structural studies and clinical challenges of new β -lactamases from gram-negative bacteria. *Annual Review of Microbiology*, **65:** 455-478.
- Buynak, J.D. (2013). Beta-lactamase inhibitors: a review of the patent literature (2010-2013). *Expert Opinion on Therapeutic Patents.*, **23:** 1469-1481.
- Chandar, B., S. Poovitha, K. Ilango, R.M. Kumar and M. Parani (2017). Inhibition of New Delhi Metallo-β-Lactamase 1 (NDM-1) producing Escherichia coli IR-6 by selected plant extracts and their synergistic actions with antibiotics. *Frontiers in Microbiology.*, **8**: 1580.
- Changsheng, C., Z. Shengliang and S. Yanhui (2015). Series of fluorine-containing carbazole compounds, preparation method and use thereof. WIPO WO2017084231A1.
- Chaudhary, M. and A. Payasi (2013). Inhibition of metallo-βlactamases by Elores. *Journal of Antimicrobials.*, **128**: 177-182.
- Cheng, Y., L. Zhichao, L. Wei, C. Weiqiang, F. Wei and Z. Yucheng (2016). N,N'-Diaryl substituted asymmetric urea compounds and their preparation and use. *Chinese Patent.*, CN103130686B.
- Chikauchi, K., M. Ida, T. Abe, Y.Y. Hiraiwa, A. Morinaka and T. Kudo (2007). Metallo-beta-lactamase inhibitors containing maleic acid derivatives and use thereof with beta-lactam antibiotics. WIPO WO2007034924A.
- Cosgrove, S.E. (2006). The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay and health care costs. *Clinical Infectious Diseases.*, **42(S2)**: S82-S89.
- David, D., L. Simon, L. Marc, D.P. Thomas and E. Christine (2016). Compounds. U.K. Patent., GB2533136A.
- Davies, J. and D. Davies (2010). Origins and evolution of antibiotic resistance. *Microbiology and Molecular Biology Reviews.*, **74(3):** 417-433.
- En, Z., Q. Shangshang, X. Shuaimin, W. Mingming, C. Deyun, B. Yuanli, Z. Mengmeng, Y. Yong, P. Kings, W. Yana, B. Pengyan and L. Hongmin (2018). Metal β-lactamase inhibitor cyclic amino acid derivatives and dithiocarbamates prepared. *Chinese Patent.*, CN106220588B.
- Fair, R.J. and Y. Tor (2014). Antibiotics and bacterial resistance in the 21st century. *Perspectives in Medicinal Chemistry.*, 6: 25-64.

- Fast, W. and L.D. Sutton (2013). Metallo-β-lactamase: inhibitors and reporter substrates. *Biochimica et Biophysica Acta.*, **1834(8):** 1648-1659.
- Groundwater, P.W., S. Xu, F. Lai, L. Váradi, J. Tan, J.D. Perry and D.E. Hibbs (2016). New Delhi metallo-β-lactamase-1: structure, inhibitors and detection of producers. *Future Medicinal Chemistry.*, **8(9):** 993-1012.
- Holloway, A.J., J. Yu, B.P. Arulanandam, S.M. Hoskinson and T. Eaves-Pyles (2018). Cystatins 9 and C as a novel immunotherapy treatment that protects against multidrugresistant New Delhi metallo-beta-lactamase-1-producing *Klebsiella pneumoniae*. Antimicrobial Agents in Chemotherapy., 62(3): e01900-17.
- Honggang, Z., W. Cui, Y. Xiaoqian and L. Ningning (2019). 3-Sulfydryl-N-benzyl propionamides compound is inhibiting the purposes in NDM-1. *Chinese Patent.*, CN104415019B.
- Jinjun, G. (2015). Traditional Chinese medicine composition for resisting superbacteria NDM-1 drug resistance gene bacteria. *Chinese Patent.*, CN104288315.
- Junnan, M., H. Yuan, W. Qian, Z. Wenting and W. Yujie (2018). Application of thiazolidine-2, 4-dicarboxylic acid in preparing drug for inhibiting activity of drug-resistant bacteria. *Chinese Patent.*, CN108272798A.
- Kashyap, A., R. Gupta, R. Sharma, V. Verma, S. Gupta and G. Pradeep (2017). New Delhi metallo beta lactamase: menace and its challenges. *Journal of Molecular and Genetic Medicine.*, **11**(4): 1747-0862.
- Keating, T.A., T. Lister and J.C. Verheijen (2014). New antibacterial agents: patent applications published in 2011. *Pharmaceutical Patent Analyst.*, 3(1): 87-112.
- Khan, A.U., L. Maryam and R. Zarrilli (2017). Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. *BMC Microbiology.*, **17(1)**: 101.
- King, D.T., L.J. Worrall, R. Gruninger and N.C. Strynadka (2012). New Delhi metallo-β-lactamase: structural insights into βlactam recognition and inhibition. *Journal of the American Chemical Society.*, **134(28):** 11362-11365.
- Linciano, P., L. Cendron, E. Gianquinto, F. Spyrakis and D. Tondi (2019). Ten years with New Delhi metallo-β-lactamase-1 (NDM-1): from structural insights to inhibitor design. *ACS Infectious Diseases.*, **5**(1): 9-34.
- Livermore, D.M., S. Mushtaq, A. Morinaka, T. Ida, K. Maebashi and R. Hope (2013). Activity of carbapenems with ME1071 (disodium 2,3-diethylmaleate) against Enterobacteriaceae and *Acinetobacter* spp. with carbapenemases, including NDM enzymes. *Journal of Antimicrobial Chemotherapy.*, 68: 153-158.
- Llor, C. and L. Bjerrum (2014). Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. *Therapeutic Advances in Drug Safety.*, **5(6)**: 229-241.
- Ma, B., C. Fang, L. Lu, M. Wang, X. Xue, Y. Zhou, M. Li, Y. Hu,

X. Luo and Z. Hou (2019). The antimicrobial peptide thanatin disrupts the bacterial outer membrane and inactivates the NDM-1 metallo- β -lactamase. *Nature Communications.*, **10(1)**: 3517.

- Morinaka, A., K. Maebashi, T. Ida, M. Hikida, M. Yamada and T. Abe (2014). NDM inhibitor. U.S. Patent., US2014 0221330A1.
- O'Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations. The Review on Antimicrobial Resistance.
- Podolsky, S.H. (2018). The evolving response to antibiotic resistance (1945-2018). *Palgrave Communications.*, **4**(1): 124.
- Qingzhi, G., L. Xinyu and M. Yuru (2018). Proline derivatives having beta-lactamase inhibitory effect. *Chinese Patent.*, CN108084075A.
- Rogers, B.A., H.E. Sidjabat, A. Silvey, T.L. anderson, S. Perera, J. Li and D.L. Paterson (2013). Treatment options for New Delhi metallo-β-lactamase-harboring Enterobacteriaceae. *Microbial Drug Resistance.*, **19(2):** 100-103.
- Sacchettini, J.C., J.A. Mire, C.C. Thurman, N.W. Zhou, A. Joachimiak, G. Babnigg and K. Youngchang (2015). Novel inhibitors of the New Delhi metallo beta lactamase (NDM-1). WIPO WO2015157618A1.
- Shen, B., Y. Yu, H. Chen, X. Cao, X. Lao, Y. Fang, Y. Shi, J. Chen and H. Zheng (2013). Inhibitor discovery of full-length New Delhi metallo-β-lactamase-1 (NDM-1). *PLoS One.*, 8(5): e62955.
- Sidjabat, H., G.R. Nimmo, T.R. Walsh, E. Binotto, A. Htin, Y. Hayashi, J. Li, R.L. Nation, N. George and D.L. Paterson (2011). Carbapenem resistance in Klebsiella pneumoniae due to the New Delhi metallo-β-lactamase. *Clinical Infectious Diseases.*, **52(4)**: 481-484.
- Srivastava, R.K., R.I. Ichhpujani, S. Khare, A. Rai and L.S. Chauhan (2011). Superbug–the so-called NDM-1. *Indian Journal of Medical Research.*, 133(5): 458-460.
- Stone, N.R., N. Woodford, D.M. Livermore, J. Howard, R. Pike, S. Mushtaq, C. Perry and S. Hopkins (2011). Breakthrough bacteraemia due to tigecycline-resistant Escherichia coli with New Delhi metallo-β-lactamase (NDM)-1 successfully treated with colistin in a patient with calciphylaxis. *Journal* of Antimicrobial Chemotherapy., 66(11): 2677-2678.
- Sydnor, E.R. and T.M. Perl (2011). Hospital epidemiology and infection control in acute-care settings. *Clinical Microbiology Reviews.*, 24(1): 141-173.
- Ventola, C.L. (2015). The antibiotic resistance crisis: part 2: management strategies and new agents. *P* & *T.*, **40(5)**: 344-352.
- Wei, L., Y. Cheng, L. Dazhi, X. Qiang, X. Nannan and L. Shuang (2016). Having NDM-1 inhibitory activity thiophene carboxamides. *Chinese Patent.*, CN103159733B.
- Xiaoguang, L., L. Daohong and Y. Shaoqiang (2017). Aspergillomarasimine A and derivative, synthetic method

and application thereof. Chinese Patent., CN106518702A.

- Xuming, D., L. Shui, W. Yang, Z. Yonglin, W. Jianfeng and W. Tingting (2017). Medical applications of magnolol in preparing NDM-1 enzyme inhibitor. Medical applications of magnolol in preparing NDM-1 enzyme inhibitor. *Chinese Patent.*, CN107320466A.
- Xuming, D., L. Shui, W. Yang, Z. Yonglin, W. Jianfeng, Z. Jian and G. Yan (2018). Application of pterostilbene in preparation of NDM-1 enzyme inhibitor. *Chinese Patent.*, CN108159029A.
- Yang, S., L. Meiling, O. Yu and W. Xuequana (2014). Application of novel metal beta-lactamase inhibitor in preparation of medicines for resisting drug-resistance bacteria. *Chinese Patent.*, CN103951680A.
- Yarlagadda, V., P. Sarkar, S. Samaddar, G.B. Manjunath, S.D. Mitra, K. Paramanandham, B.R. Shome and J. Haldar (2018). Vancomycin analogue restores meropenem activity against NDM-1 Gram-Negative pathogens. ACS Infectious Diseases., 4(7): 1093-1101.
- Yi, Z., Y. Yongzhu, Z. Yan, B. Jinyu and S. Ying (2017). Inhibition peptide of metal beta-lactamase and application thereof. *Chinese Patent.*, CN106496303A.
- Yiqian, W., D. Xiaomei, H. Manna and Z. Xinhai (2017). 4-Oxa-4,5,6,7-tetrahydro benzo [B] furan-3-carboxylic compound and application thereof. *Chinese Patent.*, CN106905273A.
- Yu, G, W. Jianguo, Y. Cheng, W. Weimin, W. Jingm, S. Jianli, R. Zihe and L. Zhengming (2013). Application of isatin thiosemicarbazone compound in inhibition of NDM-1 activity. *Chinese Patent.*, CN102626408B.
- Yu, C., Z. Zheng and L. Xingzhen (2014). New Delhi metallobeta-lactamase inhibitory peptide and application thereof. *Chinese Patent.*, CN103588861A.
- Yu, G, W. Cui, Y. Xiaoqian and L. Ningning (2019). Application of mercapto-propanol compounds in inhibition of NDM-1. *Chinese Patent.*, CN104415017B.
- Yuan, H., W. Qian, J. Yi, Y. Kewu and Z. Fanlong (2018). Application of pyridine-2,6-dioctyl phthalate to preparation of medicine for inhibiting drug-resistant bacteria activity. *Chinese Patent.*, CN108272800A.
- Yuanjie, Y., Z. Xiangjian and H. Qiner (2016). Aspergillomarasmin compound and synthesis method thereof. *Chinese Patent.*, CN105646251A.
- Zhang, H. and Q. Hao (2011). Crystal structure of NDM-1

reveals a common β -lactam hydrolysis mechanism. *FASEB Journal.*, **25:** 2574-2582.

- Zhang, R., L. Liu, H. Zhou, E.W. Chan, J. Li, Y. Fang, Y. Li, K. Liao and S. Chen (2017). Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. *E. Bio. Medicine.*, **19**: 98-106.
- Zihe, R., Y. Cheng, C. Yue, W. Cui, G Yu, X. Yitong, X. Qiang, W. Taiyi, L. Ningning and X. Feng (2013). Application of (R)-2-methyl-3-mercaptopropionic acid in inhibiting NDM-1. *Chinese Patent.*, CN103156833A.
- Zihe, R., C. Yue, Y. Cheng, W. Cui, G. Yu, L. Ningning, X. Qiang, W. Tai, W. Taiyi, X. Yitong and X. Feng (2016). Inhibiting activity NDM-1 Application of 3-mercapto propionic amides. *Chinese Patent.*, CN103130692B.
- Zihe, R., C. Yue, G. Yu, Z. Honggang, W. Cui, L. Ningning, X. Yitong, X. Qiang, Q. Zhiyong and Y. Cheng (2016a). (2R)-1-(2-Methyl-3-(methoxy(methyl)amino)-propanoyl) pyrrolidine-2-carboxylic acid and its applications. *Chinese Patent.*, CN103159660B.
- Zihe, R., C. Yue, Y. Cheng, Q. Zhiyong, Y. Zheng, X. Yitong, L. Ningning, W. Cui, X. Qiang, X. Nannan and Z. Honggang (2016b). Application of 3-mercaptopropionic acid compounds in inhibiting NDM-1. *Chinese Patent.*, CN103156832B.
- Zihe, R., C. Yue, Y. Cheng, W. Cui, G. Yu, X. Yitong, L. Ningning, X. Qiang and Q. Zhiyong (2016c). Purpose of L-cysteine compound for restraining New Delhi metallo (NDM)-1 activity. *Chinese Patent.*, CN103127048B.
- Zihe, R., Y. Cheng, C. Yue, W. Cui, X. Yitong, L. Ningning, X. Qiang (2016d). Application of 3-mercaptopropionic acid amides of compound. *Chinese Patent.*, CN103156856B.
- Zihe, R., Y. Cheng, Q. Zhiyong, X. Yanyan, X. Qiang, L. Wei and X. Nannan (2016e). Application of Schiff base compound in inhibition of activity of NDM-1. *Chinese Patent.*, CN103156844B.
- Zihe, R., C. Yue, Y. Cheng, Q. Zhiyong, X. Yitong, W. Cui, L. Ningning, W. Jing and X. Qiang (2017). L-Cysteine use the active compounds in suppressing NDM-1. *Chinese Patent.*, CN103127047B.
- Zihe, R., Y. Cheng, C. Yue, G Yu, W. Cui, X. Yitong, X. Qiang, W. Taiyi, L.Ningning and X. Feng (2017a). (S)-2-Methyl-3mercaptopropionic acid in use in the inhibition of NDM-1. *Chinese Patent.*, CN103156834B.